Nelder-Mead Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation

نویسندگان

  • Kyle Klein
  • Julian Neira
  • K. Klein
  • J. Neira
چکیده

The Nelder-Mead simplex method is an optimization routine that works well with irregular objective functions. For a function of n parameters, it compares the objective function at the n + 1 vertices of a simplex and updates the worst vertex through simplex search steps. However, a standard serial implementation can be prohibitively expensive for optimizations over a large number of parameters. We describe an implementation of the Nelder-Mead method in parallel using a distributed memory. For p processors, each processor is assigned (n + 1)/p vertices at each iteration. Each processor then updates its worst local vertices, communicates the results, and a new simplex is formed with the vertices from all processors. We also describe how the algorithm can be implemented with only two MPI commands. In simulations, our implementation exhibits large speedups and is scalable to large problem sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A HYBRID MODIFIED GENETIC-NELDER MEAD SIMPLEX ALGORITHM FOR LARGE-SCALE TRUSS OPTIMIZATION

In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...

متن کامل

Implementing the Nelder-Mead simplex algorithm with adaptive parameters

In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contra...

متن کامل

From Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization

G.E.P. Box’s seminal suggestions for Evolutionary Operation led other statisticians to propose algorithms for numerical optimization that rely exclusively on the direct comparison of function values. These contributions culminated in the development of the widely used simplex algorithm of Nelder and Mead. Recent examination of these popular methods by the numerical optimization community has pr...

متن کامل

A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updatin...

متن کامل

A Combined Nelder - Mead Simplex and Geneti

Ni olas Durand Laboratoire d'Optimisation Globale Centre d'Etudes de la Navigation A erienne 7, av Edouard Belin 31055 Toulouse Cedex Fran e durand re her he.ena .fr tel: (33) 562 17 40 54 Jean-Mar Alliot Laboratoire d'Optimisation Globale Centre d'Etudes de la Navigation A erienne 7, av Edouard Belin 31055 Toulouse Cedex Fran e alliot re her he.ena .fr tel: (33) 562 17 41 24 Abstra t It is usu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013